STATE CAREER COMPETITION INFORMATION

Additive Manufacturing

Career Cluster: Manufacturing/STEM

State Qualifying Exam: No

National Contest: Yes

Participation: Team of 2

Competition Description

Evaluate the competitors understanding and ability to design a functional/movable assembly using additive manufacturing (DFAM).

Tasks To Be Evaluated

- 1. Engineering Notebook content.
- 2. CAD designs.
- 3. Quality of final assembly.
- 4. Design for additive manufacturing (DFAM).
- 5. Presentation.

Clothing Requirement

National Requirement:

Class E: Competition Specific: Business Casual Attire

- Official SkillsUSA white polo shirt
- Black dress slacks or black dress skirt (kneelength minimum)
- Black, closed- toe dress shoes.

State Requirement:

National Requirement OR

- White polo shirt or button-down dress shirt (other colored polo/dress shirt will be subject to deductions)
- Black dress slacks or black dress skirt (kneelength minimum)
- Black, closed-toe dress shoes.
- Any embroidered names or school patches must be covered, if applicable.

Career Competition

Provided by Competitor

- All competitors must create a one-page resume and submit a hard copy to the technical committee chair at orientation.
- Paints (optionals)

Provided by Technical Committee

- Scratch paper and pencils.
- Printed models.
- Caliper.

Additional Information

No reference materials may be used other those provided by the technical committee. Presentation time: 8 minutes per team.

Models will be printed in white, teams will be able to pick up models at the competition orientation and paint if they choose to.

SkillsUSA 2024 Additive Manufacturing State Challenge

Medallion Models

Welcome to the "logo Medallion" challenge!

The task at hand is to design an eye-catching Medallion that represents your school, yourself, mascot, state, country, event, or hobby.

Design Examples:

- Bump Maps
- Displacement Texture
- Color/Material Changes
- Embossed/Debossed Text
- Motion

Example of a Basic Design

Competition Requirements

- 1. The design **must** be completely 3D printed.
- 2. The design **can** be 3d printed using any technology.
- 3. The design **must** contain at least two legibly printed words.
- 4. The design **can** contain 3D printed bodies that are glued together for the final part.
- 5. Parts **can** be colored or painted.
- 6. The printed design **can** have moving bodies.
- 7. The design **must** be at least $3^{"} \times 3^{"} \times \frac{1}{4}^{"}$
- 8. 3D Printed Design Students must create a design that:
 - Is original and designed by contestant
 - Prints all parts in less than 8 hours
 - Uses less than **5** cubic inches of model and/or support combined for all parts.
- Students must submit files to be printed via State designated file share site no later than 11:59 PM on [Thursday, April 11th]. Final prints will be delivered the day of the contest so that students can test, assemble/modify and be evaluated.

Tips for Competitors

Here are some tips to maximize the points awarded to you:

- Build debossed text on a horizontal surface for best results. This may require building the part on its edge or standing up.
- Paint 3D is a free tool to help design the part.
- Try to leverage a design with multiple printed colors or technologies for a more creative part.
- Leverage post-processing techniques to smooth or color printed bodies.
- Additional moving parts may add to your score but can produce more points of failure on the final assembly.
- Use online resources (YouTube, GrabCAD Tutorials)
- Whenever intellectual property (IP) deters you from a project, try using approximate geometries to communicate the design intent.
- Optional design for additive manufacturing learning resources:
 - Stratasys Think Additively[™] Masterclass:
 - <u>https://youtube.com/playlist?list=PLUYaY5EIPtNBdU-s-</u> <u>7I9rI05IBHHITarl</u>

State Competition Procedure

Before or on contest day:

- 1. Students submit Engineering Notebook (Engineering notebook guidelines below)
- 2. Students submit print files in both CAD (.step, .iges, .sldprt, etc.) and mesh (STL, 3MF, OBJ, etc) format to [2024 Submission Link]
- 3. Students submit physical parts
- 4. Students submit final assembly if applicable
- 5. Students submit their Presentation

State Competition Judging Criteria

- 1. The Engineering Notebook should contain robust content, including at a minimum the following:
 - 1.1. Be clearly labeled with contestant name(s), date and page # on each page
 - 1.2. Begin with a problem statement
 - 1.3. Include discovery and documentation of approach to solve problem
 - 1.4. Include sketched design concepts with critical features labeled
 - 1.5. Critical dimensions clearly labeled in design sketch
 - 1.6. Considerations for designing for additive manufacturing distinctly addressed (i.e. part strength, part orientation) especially including any expected risks during printing
 - 1.7. Screenshots of the print time and material usage for all printed parts
 - 1.8. Design decisions and alternatives are documented and evaluated thoughtfully
- 2. The design must adhere to the Competition Requirements stated in the prior page.
- 3. Quality of final assembly
 - 3.1. Does it perform the function in the manner it was designed to do?
 - 3.2. Does it meet all requirements in contest guidelines?
 - 3.3. Do inserted components or multiple printed parts mate together properly?
 - 3.4. Did the students design the part with additive manufacturing in mind?
 - 3.5. Is there sufficient tolerance between parts for movement?

- 4. The design must illustrate best practices for "design for additive manufacturing (DFAM)". Below are some *potential* DFAM metrics to optimize for.
 - 4.1. Build Time
 - 4.2. Post-Processing/Support Removal Time
 - 4.3. Functionality Optimization (gear ratio, pliability, strength, etc.)
 - 4.4. Monetary Savings
 - 4.5. Material Consumption
 - 4.6. Energy Usage
 - 4.7. Component Consolidation (lack of store-bought hardware)
 - 4.8. Lightweighting for Ergonomics
- 5. Presentation Criteria
 - 5.1. The team clearly describes their understanding of the problem to be solved.
 - 5.2. Design Process: good design logic is used for key design choices. Intentional and well-communicated
 - 5.3. The presentation is professional and well-rehearsed
 - 5.4. The presentation emphasizes quantitative improvements (measured and estimated) of the time, quality, or cost of the improvement as well as any DFAM tactics employed.
 - 5.5. Practical evaluation: team demonstrates visually (videos, photos, drawings, animation, etc) the task they improved, both before and after.